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Abstract 

Predicting battery aging for lithium-ion batteries is crucial, because of this component¶s 

exceptional impact on the overall electric vehicle¶s durability. Since it often takes 

months or years to run experiments examining battery aging, battery aging models can 

safe plenty of development time. Conventional models often find it difficult to depict the 

complex, nonlinear aging mechanisms. Battery aging models based on Machine 

Learning have shown promising results. In this work, a data-based Long Short-Term 

Memory network (LSTM) model is developed, ultilizing a publicly available dataset of 

174 lithium-ion batteries. The LSTM¶s hyperparameters are optimized with a grid 

search, whereby the best model achieves a mean average error (MAE) of only 0.33 % 

in predicting the course of the state of health (SOH). It predicts the SOH profile of all 

validation samples in a 1.3 % MAE margin, with 72 % of the samples in a margin of 

0.3 %. By applying the model to a real-life EV charging profile, the work advances into 

unchartered territory and proposes a model advancement to overcome the problems 

encountered. 
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1 Introduction 

As the deployment of electric powertrains increases and will continue to do so in the 

years to come, the automotive industry faces new challenges in developing and 

designing the components. The battery plays a key role in the electric powertrain. Its 

characteristics impact range, charging behavior, weight, power, energy consumption, 

and durability of electric vehicles (EVs). 

A major issue with batteries in EVs is aging. By causing capacity loss and reducing the 

battery¶s power output, battery aging determines the electric powertrain's durability. 

Modeling battery aging for different charging profiles and battery configurations, 

though, is a difficult task in the development process.  

Models, accurately estimating battery aging, would safe a substantial amount of time 

in the development process, as it often takes months or years to get experimental 

feedback in terms of battery aging. The impact of new fast-charging profiles on battery 

aging could be estimated within seconds, instead of running trials taking several 

months or years. 

Several models estimate battery aging, with the most common approaches being 

physicochemical and fatigue models [1]. Lately, with advances in computational power 

and data generation, mathematical models based on Neural Networks have become 

more attractive. A number of studies have already employed data-based mathematical 

models to predict battery aging with impressive results on datasets with specific 

boundary conditions [2, 3, 4, 5, 6]. No study, however, has employed their models on 

a more general dataset. 

This work goes one step further, by developing a data-based battery aging model and 

then applying it to a more general dataset in form of a real-life EV charging profile, 

checking it for plausibility. For training the model, a publicly available dataset of 174 

lithium-ion battery cells cycled to failure is used. The model is based on an LSTM, a 

Neural Network specializing in sequence prediction problems, built with the Keras 

Machine Learning library in Python.  
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2 Literature Review 

2.1 Lithium-ion Batteries 

Lithium-ion batteries are rechargeable batteries containing lithium compounds in their 

electrodes and the electrolyte. They are commonly used in mobile electronic devices 

such as cellular phones and laptops. Additionally, their importance in electric mobility 

is rising and will continue to do so. Applications include electric bicycles, scooters, 

buses, and cars. Driven by the EV segment¶s growth, the global battery market is set 

to tenfold its sales in GWh from 120 GWh in 2017 to 1200 GWh in 2030 [7]. Lithium-

ion batteries¶ advantages are their long cycling life, high energy density, low self-

discharge rates, and high efficiency during charging and discharging compared to 

other batteries [8, 9]. 

2.1.1 Battery Specifications and Definitions 

Before focusing on the principle of lithium-ion batteries, this chapter will describe 

important battery specifications and definitions.  

Capacity: 

Capacity 𝐶, mostly stated in Ah, is defined as the maximum amount of electric charge 

a fully charged battery can deliver under specific discharge conditions, such as 

discharge current, temperature, cut-off voltage, and the stage of battery aging. It is 

calculated as the integral of the discharge current 𝐼ሺ𝑡ሻ over time for one cycle. [9] 

    

 C = න 𝐼ሺ𝑡ሻ𝑑𝑡 (2.1)  

    

The nominal capacity 𝐶ே is the amount of electric charge a fresh battery (no battery 

aging) can deliver. 
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Electrical energy: 

The electrical energy 𝑊, the product of the capacity 𝐶 and the average discharge 

voltage 𝑈ഥ, describes the amount of energy a battery can deliver. Its unit is Wh. [9] 

    

 𝑊 = 𝐶 ∙ 𝑈ഥ (2.2)  

    
Electric Power: 

The electric power 𝑃ሺ𝑡ሻ (unit is W) is defined as the product of the discharge voltage 

𝑈ሺ𝑡ሻ and the discharge current 𝐼ሺ𝑡ሻ. [9] 

    

 𝑃ሺ𝑡ሻ = 𝑈ሺ𝑡ሻ ∙ 𝐼ሺ𝑡ሻ (2.3)  

    
C-rate: 

Instead of using Ampere (A), the current for batteries is usually described with the 

dimensionless C-rate. It normalizes against the battery capacity that often varies 

between different battery cells. The C-rate is defined as the quotient of the current in 

A and the battery capacity in Ah. [10] 

    

 C − rateሺ𝑡ሻ =
𝐼ሺ𝑡ሻ ∙ h
𝐶ே

 (2.4)  

    

A C-rate of 𝑥 is often referred to as 𝑥 C. 

SOC: 

The SOC describes the ratio of the remaining battery capacity (battery not fully 

charged) compared to the maximum battery capacity. [10] 

    

 SOC =
𝐶𝑚𝑖𝑛𝑖𝑛

𝐶  (2.5)  
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SOH: 

The SOH describes the ratio of the battery capacity after a particular number of cycles 

compared to the nominal battery capacity. [10] 

    

 SOH =
𝐶
𝐶ே

 (2.6)  

    

2.1.2 Components and Basic Principle 

Figure 2.1 shows the set-up of a lithium-ion battery. In between the two electrodes, the 

lithium-ion-conducting (Li+) electrolyte is placed. The cathode (negative electrode) 

uses aluminum as the conductor, while copper acts as the conductor for the anode 

(positive electrode). Both electrodes are made of active materials. The electrodes are 

protected from direct contact with each other by the separator, a porous membrane 

that lets lithium-ions through. [9] 

 

Figure 2.1 Basic principle of a lithium-ion battery [1] 
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The discharging process, shown in Figure 2.1, transforms chemical energy into 

electrical energy. Due to the potential difference between the two electrodes, electrons 

migrate to the positive electrode through the conductor. Simultaneously, lithium-ions 

are deintercalated from the negative electrode and move to the positive electrode 

through the electrolyte so that both electrodes are electrically neutral. Charging, on the 

other hand, transforms electrical energy into chemical energy by reversing the 

discharging process. [9] 

Battery cells exist in various shapes, e.g., cylindrical, prismatic, or pouch cells. Several 

battery cells can be connected in series or parallel, dependent on the required capacity, 

current, and voltage, to form a battery system. In most cases, the battery system uses 

a battery management system to control and monitor cell voltage, temperature, and 

current. [9] 

2.1.3 Cathode Materials 

The cathode of a lithium-ion battery consists of lithium transition metals, strongly 

impacting the battery¶s characteristics, e.g., capacity, nominal voltage, and energy 

density.  

Various materials are used as cathodes, with the most common being lithium cobalt 

oxide (LCO), lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt oxide 

doped with alumina (NCA), lithium manganese oxide (LMO), and lithium iron 

phosphate (LFP). [11] 

Table 2.1 compares the characteristics of these cathode materials. 

Table 2.1 Capacity, nominal voltage, and energy density of the different materials [9, 12] 

Material Capacity/Ah kg±1 Nominal voltage/V Energy density/Wh·kg±1 

LCO 160 3,9 195 

NMC 160 3,7 205 

NCA 200 3,7 220 

LMO 100 4,1 150 

LFP 150 3,3 90-130 
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2.1.4 Charging Procedures 

Constant Current–Constant Voltage (CC-CV), shown in Figure 2.2, is the standard 

charging procedure for lithium-ion batteries. Firstly, the battery cell is charged by a 

predefined constant current. During this current-regulation phase, the voltage will 

increase to the maximum safe threshold. Subsequently, the battery cell enters the 

voltage-regulation phase. It is charged by a constant voltage while the current 

decreases. The process either ends after a particular time has passed or when a 

specific current value is reached. [13, 14, 9] 

 

Figure 2.2 CC-CV charging profile for lithium-ion batteries [14] 
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2.1.5 Battery Aging and Cycle Life 

Characteristics of a battery alter over its lifetime. Many different materials are in contact 

inside a battery cell. They unintentionally react with each other, leading to battery 

aging. This causes a decrease in the maximum battery capacity over time. 

Furthermore, the cell¶s internal resistance decreases, reducing the power output in the 

process. [9]  

The cycle life usually describes the number of cycles (fully charged and discharged) 

until the battery reaches a failure threshold in terms of remaining capacity or internal 

resistance. Most manufacturers use 80% of the nominal capacity as a threshold value 

[15]. 

Battery aging can be separated into two types: calendar aging and cycling aging. 

Calendar aging refers to the time related aging mechanisms, whereas cycling aging is 

directly related to the charging and discharging of the battery. 

Calendar aging is mainly impacted by the storage SOC of the battery and potential of 

the anode, whereby high storage SOCs and anodes with low potential should be 

avoided. [16] 

Many different stress factors influence the velocity of cycling aging. The temperature 

has a crucial impact, with a minimum degradation at around 25°C. Extreme 

Temperatures (above 45°C and below 0°C) accelerate capacity loss [17]. Additional 

factors are charge and discharge current and depth of discharge, which describes how 

much capacity is removed from the fully charged battery each cycle. This work will only 

concentrate on cycling aging. 

As the correlations between stress factors and battery degradation are often nonlinear, 

it is challenging to model battery aging. Chapter 2.2 will focus on battery aging models 

in detail. 
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2.2 Battery Aging Models 

There already exist several models to predict battery aging over its cycle life. Those 

models can be grouped into three different approaches: physicochemical models, 

fatigue models, and mathematical models. 

2.2.1 Physicochemical Models 

The development of physicochemical models can be separated into two steps. In the 

first step, a battery model, built on the cell¶s electrochemical equations, fundamental 

laws of electrodynamics, and knowledge of diffusion processes, is developed. With this 

model, the most crucial state variables in the cell can be determined at any time, e.g., 

local potential, local state of charge, local current density, etc. [18] 

As the cell¶s internal state is known, the information is now used to draw conclusions 

on battery aging processes in the second step. That step involves results from 

experiments on aging effects in the laboratory. In theory, this approach allows a 

prediction of the battery aging¶s current state at any time and every condition. [18] 

However, there are several problems with these models. Firstly, to develop a 

physicochemical model of the cell, many parameters that might evolve during aging 

have to be known. Furthermore, aging mechanisms are partly known, but partly still 

vague and, therefore, difficult to formulate into an equation. [1] 

2.2.2 Fatigue Models 

Fatigue models are inspired by the idea that single events influence the aging process 

incrementally. Thus, the capacity loss is seen as an accumulation of various events 

that decrease the remaining capacity, whereby the amount of loss depends on a 

number of factors. This is a standard approach in other fields of engineering, such as 

materials science. [1] 
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A common approach is the Wöhler method. It is based on the concept that failure 

results from cyclic stress accumulation over the lifetime and that the damage 

accumulated during one cycle cumulates with the previous damage. [1] 

A further fatigue model is the weighted Ah model, an evolution of the Wöhler method. 

Instead of cycles, the weighted Ah model focuses on the amount of electric charge 

throughput, which is a better metric for batteries. The damage occurring per Ah 

throughput is weighted based on various parameters. [1] 

Fatigue models do not require that many cell parameters and, thus, are pretty easy to 

implement. Nevertheless, the two hypotheses that aging events do not influence each 

other and that damage always cumulates to existing damage, limit fatigue models¶ 

validity. [1] 

2.2.3 Mathematical Models 

Mathematical models set themselves apart from other battery aging models, as they 

use Machine Learning methods to predict battery aging. This chapter will only 

concentrate on Neural Networks since they are mainly used for mathematical models. 

A neural network can be considered as a black box, connecting input data to output 

data through a combination of nonlinear functions (see chapter 2.3). Thus, the model 

can predict battery aging by inputting data, such as current, voltage, and temperature 

profiles. [1] 

Several publications are already employing Neural Networks to predict battery aging. 

Severson et al. [2] and Attia et al. [3] developed an early cycle life prediction based on 

Neural Networks. Both, Veeraraghavan et al. [4] and Choi et al. [5] predict the course 

of the SOH over cycles, whereas Lucu et al. [6] predict calendar aging under several 

conditions. 

The greatest challenge with mathematical models is, getting a large and good enough 

dataset so that Neural Networks can detect patterns, generalizing on unseen data. 
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2.3 Neural Networks 

Neural Networks are a Machine Learning method inspired by the way human brains 

work [19]. Like human brains, Neural Networks consist of many neurons that are 

connected to each other. For consistency, neurons in a Neural Network will be referred 

to as units from now on. 

 

Figure 2.3 Basic model of a single unit 

Figure 2.3 shows the model for a single unit, receiving input signals 𝑥𝑖  via connections 

to other units. The unit can be expressed as a mathematical function with the transfer 

function 𝑓𝑡𝑛௦𝑓ሺ𝑥ሻ, processing the difference of the weighted input signals and the 

bias 𝑏෨. In most cases, the 𝑓𝑡𝑛௦𝑓ሺ𝑥ሻ carries out the following function: If the difference 

is greater or equal to 0, the unit should pass 1 to the next unit. If not, the unit should 

output 0. [19] 

    

 𝑦 = 𝑓𝑡𝑛௦𝑓 ቌ൭𝑤𝑖෦
𝑛

𝑖=1

∙ 𝑥𝑖൱ − 𝑏෨ቍ (2.7)  

    

This task can either be realized with the step function or approximated with the sigmoid 

function (see Figure 2.4). 
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Figure 2.4 Step function and sigmoid function 

Units of a neural network are structured in linear arrays, called layers. The layer¶s units 

are connected to the units of the successive layer. A Neural Network consists of one 

input layer, one or multiple hidden layers, and one output layer. The input layer 

receives the inputs of the Neural Network and passes them to the first hidden layer. 

Hidden layers further process the signals, detecting patterns. The final output layer 

gives out the Neural Network¶s result, called prediction. Designing the Neural 

Network¶s architecture involves defining the number of hidden layers and units. [19] 
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Figure 2.5 Structure of a Neural Networks [20] 

Neural Networks improve their performance with a training process. During training, 

weights and biases are adjusted in a way that the error between the predicted and 

expected output is minimized. The metric for this error is the loss function. [19] 

2.4 Long Short-Term Memory Networks 

The Long Short-Term Memory network (LSTM) is a neural network especially designed 

for sequence problems. By adding the temporal dimension to Neural Networks, it can 

detect temporal patterns within sequences. This skill makes LSTMs extremely useful 

for many problems in Machine Learning. Particularly, the rise of voice assistants over 

the last five years can be attributed to LSTM¶s impressive results in speech recognition 

[21]. Further applications include image caption generation, text translation, 

handwriting recognition and generation, and sequence forecasting (for example, stock 

prices) [22]. LSTMs can also be used for video pattern recognition or classification, 

e.g., for autonomous driving [23]. 
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2.4.1 LSTM unit 

LSTM layers consist of multiple LSTM units. An LSTM unit can be thought of as a loop 

repeated for every time step of the input sequence. What makes LSTMs units so 

special is the ability to pass signals, including the unit¶s output ℎሺ𝑡ሻ and the internal 

state 𝑐ሺ𝑡ሻ, “laterally” to the successive time step. Therefore, LSTMs can memorize 

information from previous time steps. 

On the left side of Figure 2.6, a single LSTM unit is illustrated, processing the unit¶s 

input 𝑥ሺ𝑡ሻ and then passing 𝑐ሺ𝑡ሻ and ℎሺ𝑡ሻ to the following time step. On the right, the 

LSTM unit is depicted over a sequence of three input time steps (rolled out in time). 

There are two ways of how an LSTM unit processes the input, depending on its 

application. It can either give out an output every time step (the full output sequence 

ℎሺ𝑡ሻ) or only return an output at the sequence¶s end. 

 

Figure 2.6 A single LSTM unit rolled out in time 

The architecture of an LSTM unit is more complicated than the one of a basic neural 

network unit. Figure 2.7 shows its structure, containing a forget gate, an input gate, 

and an output gate.  
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Figure 2.7 Architecture of an LSTM unit [19] 

The unit receives ℎሺ𝑡 − 1ሻ and 𝑐ሺ𝑡 − 1ሻ as recurrent signals from the previous time 

steps and passes ℎሺ𝑡ሻ and 𝑐ሺ𝑡ሻ to the next time step. The forget gate 𝑓ሺ𝑡ሻ, a sigmoid 

function in dependence upon the input time step vector 𝑥ሺ𝑡ሻ, ℎሺ𝑡 − 1ሻ, weights, and 

biases, decides, whether the internal state should be reset. 

    

 𝑓ሺ𝑡ሻ = 𝜎൫𝑊𝑓ℎℎሺ𝑡 − 1ሻ +𝑊𝑓𝑥𝑥ሺ𝑡 − 1ሻ + 𝑏𝑓൯ (2.8)  

    

Updating the internal state is the task of the input gate. The input gate 𝑖ሺ𝑡ሻ and the 

internal state update �̃�ሺ𝑡ሻ are calculated for that purpose.  

    

 𝑖ሺ𝑡ሻ = 𝜎ሺ𝑊𝑖ℎℎሺ𝑡 − 1ሻ +𝑊𝑖𝑥𝑥ሺ𝑡 − 1ሻ + 𝑏𝑖ሻ (2.9)  

 �̃�ሺ𝑡ሻ = tanhሺ𝑊�̃�ℎℎሺ𝑡 − 1ሻ +𝑊�̃�𝑥𝑥ሺ𝑡 − 1ሻ + 𝑏𝑐̃ሻ (2.10)  

    

Finally, the new internal state 𝑐ሺ𝑡ሻ is determined with 𝑓ሺ𝑡ሻ, cሺt − 1ሻ, iሺtሻ, and �̃�ሺ𝑡ሻ. 

    

 𝑐ሺ𝑡ሻ = 𝑓ሺ𝑡ሻ ∙ cሺt − 1ሻ + iሺtሻ ∙ �̃�ሺ𝑡ሻ (2.11)  
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The output gate is responsible for the output ℎሺ𝑡ሻ, that is calculated as a product of the 

output gate 𝑜ሺ𝑡ሻ and tanh൫𝑐ሺ𝑡ሻ൯. 

    

 𝑜ሺ𝑡ሻ = 𝜎ሺ𝑊𝑜ℎℎሺ𝑡 − 1ሻ +𝑊𝑜𝑥𝑥ሺ𝑡 − 1ሻ + 𝑏𝑜ሻ (2.12)  

 ℎሺ𝑡ሻ = 𝑜ሺ𝑡ሻ ∙ tanh൫𝑐ሺ𝑡ሻ൯ (2.13)  

    

2.4.2 Loss Function 

The loss function is crucial for an LSTM model. The training algorithm uses the loss 

function to evaluate the model¶s current performance and tries to minimize it to improve 

the performance. It is a challenging task to combine all good and bad aspects of a 

complex model into a single number, which allows a comparison between different 

predicted outputs. [24] 

The choice of a loss function 𝑄 depends on the problem type the LSTM faces. This 

chapter will only focus on regression problems (a real-value quantity is predicted). The 

two main loss functions for regression problems are mean squared error (MSE) and 

mean absolute error (MAE). [22] 

MSE is defined as the mean of the squared error. 𝑛 is the number of time steps, 𝑦ሺ𝑡ሻ 

is the predicted value at time step 𝑡, and 𝑦ොሺ𝑡ሻ is the expected value at time step 𝑡. 

    

 𝑄MS =
1
𝑛

ሺ𝑦ොሺ𝑡ሻ − 𝑦ሺ𝑡ሻሻ2
𝑛

 (2.14)  

    

MAE is defined as follows. 

    

 𝑄M =
1
𝑛

|𝑦ොሺ𝑡ሻ − 𝑦ሺ𝑡ሻ|
𝑛

 (2.15)  
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Both performance indicators have advantages and disadvantages. Compared to MAE, 

MSE weights the larger errors way more, whereas MAE weights all errors the same. 

Thus, it is hard to compare different MSE results, because one large error is enough 

for the MSE to shoot up. That is why, an optimization of the MSE is mainly focused on 

large errors, often neglecting smaller errors. [25] 

It can be shown: When the MAE is minimized, the prediction¶s mean tries to match the 

expected values¶ mean. However, as the MSE is minimized, the prediction¶s average 

targets the expected values¶ average. What does that mean? Optimization of the MAE 

will result in a bias (∑ ሺ𝑦ොሺ𝑡ሻ − 𝑦ሺ𝑡ሻሻ ≠ 0𝑛 ), whereas optimization of the MSE is unbiased. 

[25] 

In summary, which loss function to use cannot be generalized and depends on the 

specific application.  

2.4.3 Backpropagation Through Time 

Backpropagation through time (BPTT) is the training algorithm used for LSTMs. It 

expands the standard backpropagation algorithm by including the time dimension. 

The goal of training a model is to improve its prediction performance by minimizing the 

loss function. The loss 𝑄ሺ𝑤1, … , 𝑤𝑚ሻ is a function of the model¶s 𝑚 trainable parameters 

𝑤𝑖  (weights and biases) with 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚. To approximate the minimum of the 

multi-variable function 𝑄ሺ𝑤1, … , 𝑤𝑚ሻ, the gradient descent, a common numeric 

approach, is used. The idea of gradient descent is to find a minimum of a multi-variable 

function by taking iterative steps into the negative gradient¶s direction from the current 

point on. The components of the loss function¶s gradient ∇𝑄 are the partial derivatives 

of 𝑄ሺ𝑤1,… ,𝑤𝑚ሻ. 
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 𝛻𝑄 =

(

 
 

𝜕𝑄
𝜕𝑤1
⋮
𝜕𝑄
𝜕𝑤୫)

 
 

 (2.16)  

    
In case of the most straightforward model – one input, one output, and one unit per 

layer with one trainable parameter – the partial derivative of 𝑄ሺ𝑤1,… ,𝑤𝑛ሻ with respect 

to 𝑤𝑖  (𝑖-th weight counted from the input layer) is calculated with the chain rule as 

follows. 

    

 
𝜕𝑄
𝜕𝑤𝑖

=
𝜕𝑄
𝜕𝑤𝑚

𝜕𝑤𝑚
𝜕𝑤𝑛−1

…
𝜕𝑤𝑖+1
𝜕𝑤𝑖

 (2.17)  

    

If the partial derivative of 𝑄ሺ𝑤1,… , 𝑤𝑛ሻ with respect to the following weight 𝑤𝑖+1 is 

known, the calculation simplifies significantly. 

    

 
𝜕𝑄
𝜕𝑤𝑖

=
𝜕𝑄
𝜕𝑤𝑖+1

𝜕𝑤𝑖+1
𝜕𝑤𝑖

 (2.18)  

    
In a complex Neural Network with layers that consist of many trainable parameters, 

influencing all of the successive layers¶ trainable parameters, the calculation is not that 

easy. However, the partial derivative can still be expressed as a sum of those terms 

over all the successive layers¶ trainable parameters. 

The standard backpropagation algorithm is a way to calculate these partial derivatives 

by employing the chain rule. The first step is to propagate a training input through the 

network forward. With the predicted output and the expected output from the training 

data, the loss function computes the error. Next, the algorithm propagates through the 

network backward and calculates the partial derivatives 𝜕𝑄
𝜕𝑤𝑖

, using the partial 

derivatives of the successive layer¶s trainable parameters. Now that 𝛻𝑄 is known, the 

trainable parameters are adjusted with the optimization algorithm based on the 
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gradient descent (see chapter 2.4.4), and the backpropagation algorithm is repeated. 

[22] 

BPTT is the application of the backpropagation algorithm for LSTMs. By unrolling the 

LSTM over all input time steps, the network can be considered one big deep Neural 

Network – deep in time [26]. Backpropagation can now be carried out on that network, 

as described earlier. [22] 

The computational expense of BPTT is strongly dependent upon the number of input 

time steps because they determine the number of derivatives required for a single 

update of the trainable parameters. Many input time steps can cause the trainable 

parameters to go to zero or explode, negatively impacting the model¶s ability to learn 

a problem. [22] 

2.4.4 Optimization Algorithm 

The optimization algorithm or optimizer defines the way the trainable parameters 𝑤 

(includes weights and biases) are adjusted iteratively. 

    

 𝑤 = ൭
𝑤1
⋮
𝑤𝑚
൱ (2.19)  

    

Every optimizer used for training LSTMs is based on the gradient descent, adjusting 𝑤 

in the negative direction of the loss function¶s negative gradient ∇𝑄 that is determined 

with BPTT. The learning rate 𝜂 sets the adjustment¶s step size. 

    

 𝑤 ∶= 𝑤 − 𝜂𝛻𝑄 (2.20)  

    
The main difference between various optimizers is the learning rate. Setting it too high 

can cause the model to diverge, and setting it too low slows down convergence [24]. 

Besides the classic stochastic gradient descent with a fixed learning rate, multiple 

extensions have an adaptive learning rate (see chapter 3.3.2). 
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2.4.5 Overfitting and Dropout 

A common problem with Neural Networks, especially deep LSTMs, is overfitting. An 

overfit model performs well on the training dataset and continues to improve. At the 

same time, the performance on the validation dataset only improves up to a certain 

point and deteriorates from then on (see Figure 2.8). That happens because, in a vast 

network, some units rely on other units to fix their mistakes. Therefore, the model co-

adapts to the training dataset. Those co-adaptations do not generalize on unseen data, 

leading to worse performance on the validation dataset. [27] 

 

Figure 2.8 An extreme example of overfitting. Epochs are the number of passes through the samples 

of the training set. 

The core concept of dropout is that random units, along with their connections in the 

network, are dropped out during training. That means they are temporally removed 

from the network, therefore, not affecting the output (see Figure 2.9). Every unit in a 

Neural Network trained with dropout learns to deal with a random sample of other units, 
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no longer relying on other units to fix up their own mistakes, making the model more 

robust to unseen data. [27] 

 

Figure 2.9 Dropout Neural Network model where dropout is applied to every layer [27] 
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3 Methods and Results 

This chapter deals with the development process of the data-based battery aging 

model. The model¶s input contains the charging profiles current, voltage, and 

temperature over a particular number of cycles. It predicts the decrease in capacity 

over those cycles, using a Machine Learning approach. As this is a sequence-to-

sequence prediction problem, an LSTM is employed for the model by implementing 

the Keras Machine Learning library in Python. 

3.1 Data 

The dataset used to train and validate the model, including 174 LFP cells cycled under 

varying fast-charging conditions, comprises publicly available datasets from two 

papers. Both publications, Severson et al. [2] and Attia et al. [3], use the data to develop 

an early cycle life prediction model based on Machine Learning. 

The LFP cells, manufactured by A123 Systems (APR18650M1A), are identical in both 

datasets. They were cycled in a forced convection temperature chamber, with the 

temperature set to 30°C. The battery cells have a nominal voltage of 3,3 V and a 

nominal capacity of 1,1 Ah. 

All cells in the dataset were charged with a CC-CV charging procedure. However, 

during the current regulation phase (until 80% SOC), there is either a one-, two-, or 

four-step fast-charging policy in place. Thus, the constant current switches in that 

phase. Figure 3.1 visualizes the three different fast-charging policies. All cells were 

discharged at 4C. 

The cells were cycled to failure and, in some cases, even beyond, with the number of 

cycles varying between 200 to more than 2000. Throughout each cycle, current, 

voltage, temperature, and time were measured in intervals of 3 s - 4 s. Additionally, the 

cell¶s internal resistance and the charged and discharged capacity are measured for 

each cycle.  
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Figure 3.1 Examples of different fast charging policies 

3.2 Data Preparation 

In order to get good results from the LSTM model, the input and output data needs to 

be prepared beforehand. 

Generally, the LSTM expects the data to have three dimensions: samples, time steps, 

and features. The number of time steps should be limited to 200-400 for the BPTT to 

work correctly, making the decision on how to shape and split the data crucial [22]. 

To evaluate the model¶s performance, the initial dataset must be split into a training 

and validation set. The training set is the data employed to train the model. In contrast, 

the validation set is not used for training and therefore provides an unbiased evaluation 

of the model¶s performance on unseen data. Here, the training set contains 80 % of 

the samples, and 20 % of the samples are used for validation.  
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3.2.1 Number of Cycles 

Figure 3.2 shows the distribution of cycles run for all samples in the raw dataset. As 

there are only eight cells cycled for more than 1500 cycles and 24 for more than 1070 

cycles, the model would not have enough training data to sufficiently learn the problem 

for cycles greater than 1070 cycles. Therefore, all samples are limited to a maximum 

of 1070 cycles. 

Roughly half of the raw dataset¶s battery cells were cycled to a SOH of 80 %, which is 

the threshold to determine the cycle life in most technical applications. The other 85 

cells were cycled beyond their cycle life. As the cell¶s behavior beyond the cycle life is 

irrelevant for this application, these samples were cut to 80 % SOH. Figure 3.2 shows 

the distribution of cycles in the adjusted dataset and compares it to the raw dataset. 

 

Figure 3.2 Number of cycles in the raw dataset compared to the adjusted dataset 

3.2.2 Input Data 

The input data for the LSTM model consists of the cell¶s current, voltage, and 

temperature profiles. The initial dataset includes the profiles for charging and for 
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constant discharging of 174 battery cells. For each cycle, the measurement period for 

charging is about 30 min, containing roughly 800 measurement points. Since the 

discharging profiles are not relevant for the model that focuses on fast charging, only 

the charging profiles are used for the input data. 

Keras expects a vectorized representation of the data, requiring each sequence to 

have the same length. However, in the utilized dataset, every cycle¶s measurement file 

has a different length due to the varying charging and measurement conditions. Thus, 

the sequences are padded with a specific masking value at the end, adjusting every 

sequence to the same length. To notify the model that parts of the input data are 

padded and should be ignored, the input data is masked in the LSTM (see chapter 

3.3.1). One time step in the input data set equals one minute in the measurement file. 

Even though the longest sequence only lasts 40 minutes, the number of time steps is 

set to 120, allowing the model to handle longer sequences in a possible application. 

The whole dataset includes 68 cycles with data anomalies, where the charging process 

was suddenly interrupted (see Figure 3.3). Those cycles were masked so that they do 

not impact the model. 

 

Figure 3.3 Data anomaly in the current and voltage profiles 

Additionally, the input data needs to be scaled when training an LSTM. Unscaled data 

slows down the learning and convergence of the model and, in many cases, even 

prevents the model from effectively learning the problem. Normalization and 
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standardization are mostly used for scaling. Normalization rescales the data so that all 

values are within the range of 0 and 1, expecting knowledge of the minimum and 

maximum observable values. On the other hand, standardization rescales the 

distribution of values so that the mean is 0 and the variance is 1, requiring knowledge 

of the mean and the variance. This can be thought of as centering the data. Estimates 

of the dataset¶s mean and variance are often more robust to new data than the 

minimum and maximum values. [22] 

The type of scaling for the input data must be well thought of. It must be applicable to 

new data with different boundary conditions that use the scaling parameters as this 

input dataset. 

The initial current profile ranges from 0 C (no charging) up to 8 C (maximum charging 

current). As the minimum value already lies conveniently, the profile is normalized so 

that all values are within the range of 0 and 1. The range of voltage profiles depends 

on the type of cathode the cell contains. Since the model also has to fit other lithium-

ion batteries besides LFP cells, the current is first normalized for every cathode type. 

Subsequently, the current profile is standardized with the scaling parameters of the 

original current profile. Temperatures range from 25 °C up to 38 °C. It is difficult for the 

model to learn from such values. Therefore, the temperature profile is standardized. 

Figure 3.4 shows the original current, voltage, and temperature profiles compared to 

the scaled ones for one representative cell. 
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Figure 3.4 The figure shows current, voltage, and temperature profiles of a representative sample for 

all 1070 cycles. On the left side: unscaled date. On the right side: scaled data. 

As previously mentioned, Keras expects the data to have the three dimensions 

samples, time steps, and features. Here, however, the input data is four-dimensional, 

with the number of battery cells, the measured sequences per cycle, the cycles, and 

the features (current, voltage, and temperature) as dimensions. Therefore, the cycles 

are seen as additional features, bringing the number of features to 1070 ∙ 3 = 3210 in 
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total. For the sample 𝑗 and the time step 𝑡, the features are arranged as follows (𝑛 is 

the number of cycles, 𝑥 is the model¶s input data). 

    

 𝑥ሺ𝑗, 𝑡, : ሻ =

(

 
 
 
 
 

C − rateሺ𝑗, 𝑡, 1ሻ
𝑈ሺ𝑗, 𝑡, 1ሻ
𝑇ሺ𝑗, 𝑡, 1ሻ

⋮
C − rateሺ𝑗, 𝑡, 𝑛ሻ
𝑈ሺ𝑗, 𝑡, 𝑛ሻ
𝑇ሺ𝑗, 𝑡, 𝑛ሻ )

 
 
 
 
 

 (3.1)  

    

3.2.3 Output Data 

The model¶s output data consists of the SOH profile over the number of cycles. 

However, the initial dataset does not include the SOH but the capacity for every cycle. 

Thus, the capacity is divided by the maximum capacity to get the SOH.  
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Figure 3.5 Comparison of the unfiltered and filtered SOH profiles 

Since the original measurements contained some outliers and were noisy at times, the 

data is filtered with a Savitzky–Golay filter. The data is fit with a polynomial of third 

degree and a filter window length of 101. Figure 3.5 visualizes the unfiltered and filtered 

SOH profiles for two noisy samples, and Figure 3.6 shows the final SOH profiles for all 

samples. 
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Figure 3.6 Final SOH profiles for all samples 

The output data for the model must have the shape: samples, time steps, and features. 

The samples include the 174 battery cells, the cycles represent the time steps, and the 

only feature of the output data is the SOH. As the number of cycles is larger than 200-

400, the cycles were scaled so that only every tenth cycle is one time step. Hence, the 

output time steps are limited to 107. Equally to the input sequence, the output 

sequences vary in length and are padded at the end. 

3.3 LSTM model 

For the LSTM model to predict battery cell aging, Keras deep learning library in Python 

is used [28]. Keras contains implementations of the most important building blocks for 

Neural Networks, e.g., layers, loss functions, activation functions, and optimizers. 

Apart from standard Neural Networks, Keras also supports recurrent Neural Networks 

such as LSTMs. 

This chapter will describe the architecture of the LSTM model in dependence on 

hyperparameters. The hyperparameters have a remarkable influence on the model¶s 
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performance in terms of accuracy and learning speed. Chapter 3.4 will focus on the 

individual hyperparameters in detail. 

As this is a sequence-to-sequence prediction problem where the number of input and 

output time steps vary, an Encoder-Decoder architecture proven very effective for this 

problem is used. This approach comprises the Encoder and the Decoder. The Encoder 

maps a two-dimensional input sequence with the shape (input time steps, input 

features) to a fixed-length vector. The Decoder maps the vector representation of the 

input to the two-dimensional output sequence (output time steps, output features) (see 

Figure 3.7) [29]. 

 

Figure 3.7 Exemplary Encoder-Decoder architecture rolled out in time with three input time steps and 

four output time steps. The fixed-length vector results from multiple Encoder LSTM units (they are not 

depicted in this figure). 

3.3.1 Model Architecture with Keras 

The model itself is an object from the Keras Sequential class that groups a linear stack 

of layers into a model. With the add method, a layer can be added to the model. The 
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first layer in the model is a Masking layer, skipping the inputs masked with the mask 

value. The layer expects two arguments. The input_shape argument defines the input 

time steps and features, and the mask_value argument sets the input value that is 

being ignored by the model. 

The Encoder, consisting of multiple LSTM layers, succeeds the masking layer. The 

model gains depth by stacking multiple hidden layers, making it more accurate in 

predicting complex problems. The additional hidden LSTM layers combine the learned 

representation from previous layers and create new representations at a higher level 

of abstraction [22].  

In Keras, each LSTM unit requires a two-dimensional input sequence (time steps, input 

features). When processing a two-dimensional input sequence, each unit will give out 

only the output from the final time step by default. The combined output is a vector with 

the number of units as its length. To stack LSTM layers in Keras, the layers must 

provide a two-dimensional output sequence for the following LSTM layer. By setting 

the return_sequences argument on the LSTM layer to True (defaults to False), each 

unit outputs a full sequence (every time step one output). Thus, the combined output 

sequence is two-dimensional (time steps, number of units) and can be processed by 

the successive layer. [22] 

The number of stacked LSTM layers in the Encoder is a hyperparameter of the model. 

Every layer apart from the last returns a two-dimensional output, with the argument 

return_sequences set to True. The last layer returns a vector representation of the 

input. In most models using an Encoder-Decoder architecture, the number of units per 

layer declines through the Encoder [30]. This approach is also used for the LSTM 

model here. The number of units in the first LSTM layer, a power of two, is a 

hyperparameter. The number of units halves at each layer. For 128 units in the first 

layer, e.g., the units would decline as follows: 64, 32, 16, 8, … 

The RepeatVector layer serves as a bridge between the Encoder and the Decoder, 

repeating the vector representation to give out a two-dimensional output for the first 

Decoder layer. The repetition factor n sets the length of the output sequence that will 

not be changed through the Decoder. Hence, n is set to the number of output time 

steps. 
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The first part of the Decoder is another stacked LSTM. It has the same structure as the 

Encoder in terms of layers and units, just in the opposite direction. So, the number of 

units doubles at every layer until it reaches the hyperparameter units at the final layer. 

The only difference is that the Decoder LSTM gives out a two-dimensional output, and, 

hence, the return_sequences argument on the last LSTM layer is set to True as well. 

To prevent the model from overfitting, the Decoder contains a Dropout layer after the 

stacked LSTM. Keras offers a Dropout layer that randomly sets inputs to 0 at a given 

dropout rate during model training. The other inputs are scaled up by 1 / (1 – dropout 

rate) so that the sum over all inputs does not change. In this model, the Dropout layer 

is located before the model¶s final layer, as proposed in the original paper from Hinton 

et al. [31]. The layer¶s dropout rate argument is a hyperparameter of this model. 

The final layer of the Decoder is an output layer. It contains a TimeDistributed wrapper, 

applying a Dense layer to every time step of the input. This combination is often used 

for outputting sequence predictions. Dense is a fully-connected layer, i.e., every unit 

processes the full input. Each unit computes the equation output =

activationሺinput vector ∙ weight vector + biasሻ, where activationሺ ሻ is the activation 

function hyperparameter passed as an argument. The number of units determines the 

number of output features and, therefore, is set to one. 

Figure 3.8 visualizes the architecture of the LSTM model.  
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Figure 3.8 The flow chart shows the architecture of the LSTM model in Keras. The model 

hyperparameters are marked in green. Left: layer and given arguments. Right: shape of the input and 

output. 
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3.3.2 Model Compilation 

The Compilation transforms the stack of defined layers into a highly efficient series of 

matrix multiplications that can be processed by the CPU or GPU. The compile method, 

applied to the model, requires a number of parameters to be specified. Specifically, the 

optimization algorithm to train the model, the loss function to evaluate the model, and 

the type of sample weighting applied to outputs. [22] 

Optimization algorithms for LSTMs are all based on the gradient descent. The learning 

rate 𝜂 differs for the various optimization algorithms. The original stochastic gradient 

descent (SGD) comes with a fixed learning rate that is pretty small, making it very slow 

to converge. Several extensions are based on an adaptive learning rate, causing large 

weight changes in the first iterations, whereas later iterations only fine-tune. Adaptive 

gradient algorithm (AdaGrad), root mean square propagation (RMSProp), and 

adaptive moment estimation (Adam) are the most common adaptive optimizers. Adam 

has proven to outperform the existing optimizers [32] and is therefore used for this 

model. 

As previously mentioned, MSE and MAE are the only loss functions employed for 

regression problems. Here, MAE is chosen to optimize the model, as MSE mainly 

focused on samples with large errors neglected the remaining samples in own trials. 

Since the output sequence is padded, the error for the padded time steps may not 

affect the total loss of the prediction. This goal can be achieved with temporal sample 

weighting. Thus, the sample_weight_mode argument is set to “temporal”, allowing it to 

establish individual loss weights for every time step during training. 

3.3.3 Model Training 

The model can be trained with the fit method, adapting the trainable parameters to 

minimize the loss on the training set. BPTT is used to determine the gradient of the 
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trainable parameters. Subsequently, the model is optimized according to the 

optimization algorithm. The fit method requires several parameters to be set. 

X and y expect the training set of input and output data. Additionally, the validation set 

used to show the validation loss after every epoch is given with the validation_data 

parameter.  

The batch_size parameter defines the number of samples, after which the trainable 

parameters are updated. This subset of samples is called a batch. The batch size is a 

hyperparameter for this model. 

With the epochs parameter, the number of passes through all training set samples is 

settled, determining how long the model is trained. After the number of epochs, the 

model should have converged towards the optimal result. The choice of epochs 

depends on the complexity of the dataset. It is set to 2000 epochs, as this number has 

worked well in own trials. 

Since the sample_weight_mode was set to “temporal” in the model compilation, the 

model expects a two-dimensional sample weight array as a parameter in the fit method. 

The weights for the sample¶s padded time steps are 0, whereas the remaining weights 

of the sample are scaled up so that the sum of all weights equal the number of output 

time steps. 

3.4 Hyperparameters 

This chapter will describe the model¶s hyperparameters in detail and sets the range in 

which the hyperparameters will be optimized in the next step. 

Number of LSTM layers: 

This hyperparameter describes the number of stacked layers in the Encoder and 

Decoder. It is a crucial hyperparameter, as Graves et al. [26] and Mohamed et al. [33] 

found that the depth of the LSTM is more important than the number of LSTM units in 

a given layer in terms of model accuracy. Nonetheless, too many stacked LSTM layers 

can cause overfitting and slow down learning. The ideal number of layers depends on 

the complexity of the problem and cannot be generalized. Brownlee [22] suggests 2-4 
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stacked layers. Here, the hyperparameter¶s value range for optimization is settled to 2, 

3, and 4, i.e., 4, 6, and 8 LSTM layers in total (Encoder and Decoder).  

Number of LSTM Units in the first Encoder layer: 

Since the number of LSTM layer halves every layer, the number of LSTM units must 

be a power of two. As in the case of the number of layers, there is no ideal value that 

works for every model. In many cases, the number of units lies between 60 and 120 

[22]. For the hyperparameter optimization, the three values 64, 128, and 256, are 

chosen for the first LSTM layer. 

Dropout rate in the Dropout layer: 

The dropout rate defines the rate at which inputs are set to zero to prevent overfitting. 

In the original paper that first applied dropout to Neural Networks, the authors found a 

dropout rate of 0.5 is close to optimal for many applications [27]. A dropout rate of 0.4 

has worked pretty sufficiently as well in own trails. Therefore, these two values are 

used for optimization. 

Activation function in the Dense layer: 

The activation function is the function the final model layer uses to map the inputs to 

an output (output = activationሺinput vector ∙ weight vector + biasሻ). It is crucial 

because the function determines the format of the outputs. For regression problems, 

mainly two functions are chosen: the linear activation function and the rectified linear 

unit (ReLU) (see Figure 3.9). Glorot et al. [34] have found a better training performance 

for the ReLU function due to its nonlinearity. However, the nonlinear activation 

function¶s impact in a deep LSTM with several nonlinear functions might be limited. 
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Figure 3.9 Comparison between the linear and ReLU activation function 

Batch size: 

The batch size sets the number of samples per trainable parameter update. A larger 

batch size decreases the training time. Common values for the batch size are 32, 64, 

and 128 [22]. Here 32 and 64 are used to optimize the model. 

3.4.1 Grid Search 

The model¶s hyperparameters were tuned with a grid search, training the model with 

all possible hyperparameter combinations. As two hyperparameters can assume three 

different values, and the other three can assume two values, this brings the total 

number of combinations to 72. 

Comparing the model¶s performance with different hyperparameters is problematic 

since a training process is random and, therefore, not reproducible. Neural Networks 

use randomness on purpose to ensure that the training process converges to the global 

minimum of the loss function. LSTMs utilize randomness in the initialization of trainable 
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parameters, for the dropout, and in the optimization function. There are two main 

solutions to this problem. The first solution is to run the training so often (more than 30 

times) that the model¶s performance can be evaluated with statistics. This approach is 

not applicable in this case, as it already takes roughly three hours to run the training 

for only one model. Hence, the second approach is employed here. By setting the 

random number generator to a fixed seed at the beginning of training, the results 

become reproducible and can be compared between different hyperparameter 

configurations. 

3.4.2 Results 

The grid search¶s results are evaluated with the validation dataset. Each one of the 72 

models performs surprisingly well on the validation dataset. The validation MAEs range 

from 0.33 % up to 0.65 %. Hereafter, the results of the best three models are shown in 

more detail.  

Table 3.1 Comparison between the best three models 

Model 
Hyperparameter 

𝑸𝐌𝐀𝐄 𝐯𝐚𝐥𝐢𝐝𝐚𝐭𝐢𝐨𝐧 / % 
Layers Units Dropout Activation Batch size 

A 3 64 0.5 linear 64 0.3288 

B 3 64 0.5 linear 32 0.3293 

C 4 64 0.4 linear 32 0.3428 

 

Table 3.1 compares the hyperparameter configurations and the MAE on the validation 

set between those models. What strikes out, is that 64 LSTM units in the first Encoder 

layer seem to work best. Additionally, the linear activation function has outperformed 

the ReLU activation function every time and, thus, the best ten models all have a linear 

activation function. 

Figure 3.10 shows the course of the MAE on the validation set 𝑄M va୪idation over the 

training epochs. The models B and C with the batch size of 64 converge earlier than 

model A with a batch size of 32. However, this effect is compensated by less training 



 

- 39 - 

time due to less model updates for a larger batch size. All models, though, have already 

converged at epoch 1100. The number of epochs, in hindsight, was chosen a little too 

large. 

 

Figure 3.10 Validation loss over epochs for model A, B, C 

As shown in Figure 3.11, Model B performs best on the majority of samples. However, 

model B has one outlier sample with an MAE of 2.8 %, worsening its average loss. All 

in all, the three models perform extremely well, predicting 95 % of the validation 

samples within an MAE margin of 0.6 %. 



 

- 40 - 

 

Figure 3.11 MAE distribution for every validation sample 

Finally, Figure 3.12 compares the expected SOH profiles to the predictions from model 

A, B, and C. 
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Figure 3.12 Expected SOH profiles compared to the the predictions from model A, B, and C for 15 

validation samples  
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4 Application 

In this chapter, the developed model is applied to a real-life EV charging profile. Since 

the applied charging profile strongly differs from the charging profile in the dataset and 

another cathode material is used, the results have no claim to be accurate. The point 

of this application is to check the model for plausibility. A higher current for example, 

should result in accelerated battery aging. 

4.1 Real-Life EV Charging Profile 

The real-life charging profile data includes current, voltage, and temperature profiles 

from an EV charged with DC. The current profile was measured directly, whereas 

voltage and temperature were estimated based on an already existing battery 

simulation. 

As the EV charging profile is not a fast-charging profile (maximum 0.9 C), one cycle 

takes way longer than one of the initial dataset. A cycle in the EV charging profile takes 

115 minutes, compared to an average cycle of 35 minutes in the training dataset. The 

trainable parameters of the LSTM, though, are only trained to a maximum of 40 

minutes, potentially leading to odd results for longer sequences. Therefore, the time is 

scaled on the EV charging profile. The current increases by the same factor the time 

decreases by, whereas the influence of time on voltage and temperate profiles can be 

neglected. 

The time scaling basically transforms the EV charging profile into a fast-charging 

profile. Here, two different time scaling factors are examined: 2 and 4. Figure 4.1 

compares the different current profiles to a cycle from the training set. 
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Figure 4.1 Current profile comparison between a representative cycle from the training set, the real-life 

EV charging profile, and the time scaled profiles 

The lithium-ion battery used in the EV charging profile is an NMC cell, having a different 

voltage range during charging compared to the LFP cells from the training set (see 

Figure 4.2). As explained in chapter 3.2.2, the voltage profiles are first normalized and, 

subsequently, standardized with the scaling parameters from the initial dataset. 

Therefore, the scaled profiles are roughly within the same range as the training set 

voltage profile (see Figure 4.4). 

 

Figure 4.2 Voltage profile comparison between a representative cycle from the training set, the real-life 

EV charging profile, and the time scaled profiles 

The ambient temperature of the EV charging profile is 30 °C, matching the initial 

dataset¶s one (see Figure 4.3). However, the temperature profiles vary heavily between 
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the different samples of the initial dataset (see Figure 3.4), making it difficult to compare 

the temperature profiles. 

 

Figure 4.3 Temperature profile comparison between a representative cycle from the training set, the 

real-life EV charging profile, and the time scaled profiles 
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Figure 4.4 Comparison of the scaled current, voltage, and temperature profiles 

4.2 Results 

To predict results for the three regarded profiles, the number of input cycles must be 

specified. As the profiles only contain one cycle, the input array is filled up with copies 

of the current, voltage, and temperature profiles. The number of copied cycles 

determines the number of cycles the SOH is predicted for. The model predicts the SOH 

for 600, 700, 800, 900, 1000, and 1070 input cycles. For less than 600 cycles, the 

model does not have enough training samples to deliver a good prediction. Model A 

was used for the prediction. 

Figure 4.5 shows the results for the unscaled EV charging profile. Since all predictions 

nearly course on the same path independently from the number of input cycles, the 
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results seem to be plausible. The cell reaches the threshold value of 80 % SOH at 700 

cycles. 

 

Figure 4.5 Results for the unscaled EV charging profile 

When scaling time with a factor of 2, the results seem to be less plausible (see Figure 

4.6). The different predictions do not follow the same path and the cell reaches 80 % 

SOH at 800 cycles on average. This contradicts the expectation that cells charged with 

a higher current age faster. 

 

Figure 4.6 Results for the time scaled EV charging profile (time scaling factor = 2) 
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For a time scaling factor of 4, the results look even more odd (see Figure 4.7). The 

predictions do not follow the same path at all, and the cell does not seem to age very 

much, despite the fact that this is by far the profile with the highest current (see Figure 

4.1). 

 

Figure 4.7 Results for the time scaled EV charging profile (time scaling factor = 4) 

All in all, the model does not pass the plausibility check for all tested profiles. The 

predictions for different numbers of input cycles vary strongly, especially for the two 

time scaled profiles. In addition, the model predicts less battery aging for profiles with 

a higher charging current, contradicting the expectation for this plausibility check. 

Similar results were achieved with the models B, C, and further models from the grid 

search.  
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5 Conclusion 

In conclusion, this work demonstrates the promises and challenges of battery aging 

models based on Machine Learning approaches. On the one hand, the developed 

model delivers an outstanding performance on the initial dataset, making extremely 

accurate predictions. On the other hand, this work points out the issues mathematical 

models are facing when it comes to application on new data with different boundary 

conditions. 

This work only looks into battery aging occuring during charging. Battery aging during 

discharging and calendar aging are considered as neglectable consistent with the 

objectives, and, thus, are not taken into account. 

On the validation set, the best model A achieves an MAE of only 0.33 %. It predicts 

the SOH profile of all validation samples in a 1.3 % MAE margin, with 72 % of the 

samples in a margin of 0.3 %. Those results can be attributed to the extensive 

hyperparameter optimization, running a grid search of 72 different hyperparameter 

configurations in total. The final hyperparameter combinations are surprising insofar 

that the number of units for the first LSTM layer is only 64, the minimum value for this 

hyperparameter. Thus, the LSTM layer with the minimum number of units has 16 for 

model A and B, and only 8 for model C. This supports the findings from Graves et al. 

[26] and Mohamed et al. [33], stating that depth is key for LSTMs, whereas the number 

of units only play a minor role in the model¶s performance. 

The application to a real-life EV charging profile shows the boundaries of the model. 

Predictions for a different number of input cycles diverge, when they theoretically 

should lie on the same chart. Furthermore, the model predicts less battery aging for 

profiles with a higher charging current. Those odd predictions exhibit the model¶s 

boundaries resulting from the specific conditions of the initial dataset, as well as from 

the architecture of the LSTM. 

One obvious boundary is that the cells in the training dataset are cycled under extreme 

fast-charging conditions, with the maximum current ranging from 4 C up to 8 C. 

Lithium-ion batteries do not reach such high currents in real-life applications, as 3 C 
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was the state of the art for EVs in 2019 [35]. As a result, the model is only trained for 

a sequence of 40 minutes, while almost every real-life charging process takes longer. 

In addition, the initial dataset only employs one-, two-, or four-step charging profiles. 

Hence, the model only learns from static charging profiles, whereas most real-life 

charging profiles are dynamic (for example the one applied to the model here). As the 

model is trained only with LFP cells, the application to other cathode types might be 

limited. Apart from the varying current range (see chapter 3.2.2), aging mechanisms 

also vary between different cathodes. 

But the application also shows the downsides of the chosen Encoder-Decoder 

architecture. In the initial dataset, most samples end with an SOH of 80 % - 83 %. As 

the Encoder first processes all input time steps, the model learns from the correlation 

of the end SOH and the number of input samples provided. In other words, the model 

predicts the SOH after a particular cycle based on information from future cycles. This 

explains the varying predictions for different numbers of input cycles. The core of this 

problem is that the input data is actually four-dimensional but must be transformed to 

a three-dimensional input array for the LSTM. Here, the approach to just add the input 

cycles to the input features was selected, resulting in the described issue.  

This causal analysis suggests that with a different LSTM architecture this problem can 

be overcome in future work. Figure 5.1 compares the proposed architecture to the 

Encoder-Decoder architecture. The proposed architecture is based on the idea that 

the SOH for a specific cycle is predicted with the information from this cycle and the 

knowledge of already occurred battery aging from previous cycles. Therefore, the data 

for one cell is split so that one sample only contains the data from one cycle. This sub 

dataset comprises the measured sequence from only one cycle, with current, voltage, 

and temperature as three features. The model only predicts one SOH value after the 

processed cycle. How can the model access information from previous cycles, though? 

In ordinary LSTMs the internal state is reset after each sample. This is where stateful 

LSTMs come into play. They pass the internal state of the last time step to the first time 

step of the following sample, providing the knowledge of previous battery aging. After 

the LSTM processed all cycles for one cell, the internal state can be reset for the 

following cell. 
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Figure 5.1 Comparison between the used Encoder-Decoder approach and a stateful LSTM approach 

Based on the already impressive battery aging predictions the Encoder-Decoder 

architecture achieves on the initial dataset, it is proposed to combine the stateful LSTM 

architecture with more training data from different datasets to advance the model, 

making it robust to real-life EV charging profiles.  
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